沐神论文阅读速览

2025年4月15日,星期二,晴天☀️,第58篇博客。

这篇Blog耗时长,花费了很大精力和心血,但是感觉一切都值得、有价值!

跟着李沐读经典论文

今天听了大老师讲文献阅读课后很受启发,主要讲了文献阅读的方法以及如何找idea。

WWH → IDEA

  • why:为什么要做这个研究?
  • what:研究发现了什么?
  • how:研究时如何实施的,用了什么方法?

明确科研目的 - 结果导向 以终为始

  • 看文献,找方向

  • 定方向,找创新

  • 遇难题,找方法

  • 始动笔,找支撑

  • 跟进展,保状态

对于motivation的描述一定要多下功夫,核心就是要让论文在逻辑上要形成闭环。

六月中下旬就要离开雁栖湖了,离湖之前,跟着李沐老师把人工智能领域的经典文章再读一遍。

经典论文阅读

用WWH方法去分析每篇文章的核心思想,总结好模型结构图,每篇经典文章使用一句话总结说明

  • ImageNet Classification with Deep Convolutional Neural Networks(NIPS 2012);https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf; 作者:{Alex Krizhevsky、 Ilya Sutskever、Geoffrey E. Hinton}@University of Toronto;引用次数:142220;

  • Deep Residual Learning for Image Recognition(CVPR 2016); https://arxiv.org/pdf/1512.03385; 作者:{Kaiming He、 Xiangyu Zhang、Shaoqing Ren、 Jian Sun}@Microsoft Research;引用次数:264384;

  • Attention Is All You Need(NIPS 2017);https://arxiv.org/pdf/1706.03762; 作者:{Ashish Vaswanir、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N. Gomez、Łukasz Kaiser、Illia Polosukhin}@Google Brain&Google Research&University of Toronto;引用次数:175945;

  • Generative Adversarial Networks(NIPS 2014);https://arxiv.org/abs/1406.2661; 作者:{Ian J. Goodfellow、Jean Pouget-Abadie、, Mehdi Mirza、Bing Xu、David Warde-Farley、Sherjil Ozair、Aaron Courville、Yoshua Bengio}@Departement d’informatique et de recherche op ´ erationnelle&Universite de Montr ´eal&Montreal, QC H3C 3J7;引用次数:80508;

  • BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding(ACL 2019);https://arxiv.org/pdf/1810.04805; 作者:{jacobdevlin,mingweichang,kentonl,kristout}@google.com;引用次数:128516;

  • AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE(ICLR 2021);https://openreview.net/pdf?id=YicbFdNTTy 作者:{Alexey Dosovitskiy、Lucas Beyer、Alexander Kolesnikov、Dirk Weissenborn、Xiaohua Zhai、Thomas Unterthiner、Mostafa Dehghani、Matthias Minderer、Georg Heigold、Sylvain Gelly、Jakob Uszkoreit、Neil Houlsby}@Google Research&equal advising;引用次数:59885;

  • Masked Autoencoders Are Scalable Vision Learners(CVPR 2022);https://arxiv.org/pdf/2111.06377; 作者:{Kaiming He、Xinlei Chen、Saining Xie、Yanghao Li、Piotr Dollar、Ross Girshick}@Facebook AI Research (FAIR);引用次数:9490;

  • Swin Transformer: Hierarchical Vision Transformer using Shifted Windows(CVPR 2021);https://arxiv.org/pdf/2103.14030; 作者:{Ze Liu、Yutong Lin、Yue Cao、Han Hu、Yixuan Wei、 Zheng Zhang 、Stephen Lin、Baining Guo}@microsoft.com;引用次数:29432;

  • Learning Transferable Visual Models From Natural Language Supervision(PMLR 2021);https://arxiv.org/pdf/2103.00020; 作者:{Alec Radford、Jong Wook Kim、Chris Hallacy、Aditya Ramesh、Gabriel Goh、Sandhini Agarwal、 Girish Sastry、Amanda Askell、Pamela Mishkin、Jack Clark、Gretchen Krueger、Ilya Sutskever}@OpenAI;引用次数:29432;

  • Improving Language Understanding by Generative Pre-Training(OPENAI GPT);https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf; 作者:{Alec Radford、Karthik Narasimhan、Tim Salimans、Ilya Sutskever}@openai.com;引用次数:12611;

  • Language Models are Unsupervised Multitask Learners(OPENAI GPT-2);https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf; 作者:{Alec Radford、Jeffrey Wu、Rewon Child、David Luan、Dario Amodei、Ilya Sutskever}@openai.com;引用次数:15577;

  • Language Models are Few-Shot Learners(NIPS 2020/OPENAI GPT-3);https://arxiv.org/pdf/2005.14165; 作者:{Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei}@openai.com;引用次数:43857;


沐神论文阅读速览
http://example.com/2025/04/15/沐神论文阅读速览/
作者
Munger Yang
发布于
2025年4月15日
许可协议